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I. ВВЕДЕНИЕ

Нитроацетилены — новый, еще мало исследованный класс органиче-
ских соединений, интересный сочетанием энергоемкой тройной связи с
электроноакцепторной нитрогруппой. Особое внимание привлекают а-
ацетиленовые нитросоединения, для которых сопряжение π-электронной
системы с электрофильной нитрогруппой открывает широкие возможно-
сти использования в органическом синтезе.

Если по методам получения и разнообразным превращениям этиле-
новых нитросоединений уже к 1950 г. накопился обширный материал, то
систематическое изучение ацетиленовых нитросоединений началось, по
существу, только с 1969 г. В настоящей статье обобщены результаты
работ, опубликованных до начала 1973 г.

Первое упоминание о нитроацетиленах относится к 1903 г.1, когда
Виланд реакцией окислов азота с коричным альдегидом получил с не-
большим выходом желтое кристаллическое вещество брутто-формулы
C8H4N2O4. Этому соединению, на основании данных элементарного ана-
лиза и определения молекулярного веса, Виланд (ошибочно) приписал
строение р-нитрофенилнитроацетилена. Правда, автор не исключал и
другие возможные структуры.

/7-Нитрофенилнитроацетилен, по-видимому, значительно позже впер-
вые получил Новиков с сотр.2 нитрованием β-нитростирола тетраокисью
азота, однако попытки воспроизвести эту реакцию не увенчались успе-
хом: вместо нитроацетилена был выделен (как, вероятно, и Виландом')
1-нитро-2-азахромон (3-нитро-4Н-1, 2-бензоксазин-4-он) 3 (I), строение
которого строго доказано химическим путем и данными спектров ПМР,
ИК и УФ 3-5:

V
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Позднее дегидрогалогенированием с помощью аминов 1-нитро-1-
бромалкенов" и 1-нитро-1-бром-2-фенилэтилена7 были получены тяже-
лые темно-красные масла, которым авторы приписали строение а-нитро-
ацетиленов.

Так, 1-нитро-1-бром-2-фенилэтилен при обработке диэтиламином
превращался в масло, которое при перегонке взрывалось, моментально
реагировало с реактивом Байера и не обесцвечивало бромную воду. Мо-
лекулярный вес и содержание азота отвечали формуле фенилнитроаце-
тилена. Однако и эти опыты воспроизвести не удалось3.

Лишь в 1969 г. Егер и Фие впервые описали надежный способ син-
теза грег.-бутилнитроацетилена и его гомологов8. Эти исследования в
дальнейшем были расширены3.

Из несопряженных нитроацетиленов до настоящего времени получе-
ны только гексанитропроизводные9.

Недавно были получены также 1,4-гекеанитробутин-29, 1-нитроал-
кен-1-ины-310~13 и ряд элементоорганических нитробутенинов — произ-
водных кремния и германия 14.

Из функциональных производных нитроацетиленов известны только
гликоли 15"1в.

II. ПОЛУЧЕНИЕ НИТРОАЦЕТИЛЕНОВ

Простейшие α-нитроацетилены были получены (по аналогии с нит-
роалкенами) дегидрогалогенированием галогеннитроалкенов, образую-
щихся в результате присоединения NO2X[X = C117~20, X = I 2 1 ] к ацетиле-
новым соединениям.

Наиболее подходящим для этих целей оказалось нитроиодирование.
Трудности вызывал второй этап реакции — дегидроиодирование, для
осуществления которого применялись3 различные реагенты: третичные
амины, ацетат натрия в диметилформамиде (ДМФ), окись серебра в
эфире, грег.-бутилат калия; течение реакции контролировалось по ин-
тенсивности полосы тройной связи в ИК-спектрах конечных продуктов.

12 Успехи химии, № 4
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Наиболее эффективным дегидрогалогенирующим агентом оказалась гид-
роокись калия.

Так, пропусканием 1-нитро-2-иод-3,3-диметилбутена-1 (III) через-
трубку со щелочью, нагретую до ПО—120°, был получен трет.-'бутил-
нитроацетилен (IV) (выход 96—97%, чистота продукта по данным ГЖХ
98—100%).

i-Bu,

' C=CHNO 2 r

ν'
(97%)

(III) - (IV)

Аналогично были получены в чистом виде нитроацетилены с изопро-
пильным (V, выход 74%) и п-пропильным (VI, выход 28%) радикала-
ми. n-Бутил-ос-нитроацетилен выделялся в смеси с исходным продуктом.
Образование фенилнитроацетилена устанавливалось спектроскопически
(vc=c 2240 см"1); малая летучесть осложняла его дальнейшую очистку3.

Дегидроиодированию обычно подвергались стереоизомерные смеси
исходных йоднитроалкенов; использование индивидуальных цис- и
транс-изомеров не приводило к увеличению выхода.

1,1,1,4,4,4-Гексанитробутин'2 (VII) был получен с 72%-ным выходом
обменной реакцией 1,4-дибромбутина-2 с тринитрометановой солью се-
ребра9:

BrCH2-C^C-CH2Br+2AgC (NO2)3 -> (NO2)3C~CH2-C=C-CH2-C (NO2)3 + 2AgBr
(VII)

4-Триалкилсилил(гермил)-1-нитробутен-1-ины-3 образуются при де-
гидроиодировании ацетатом свинца продуктов присоединения тетраоки-
си азота и иода к соответствующим элементоорганическим винилацети-
ленам 12~14. Гидролитическое расщепление связи С—Эл в элементнитро-
бутенинах приводит к 1-нитробутен-1-ину-3 и (VIII):

CH 2=CH-C=C-Si (Ge) R3 Ϊ ί2 ι^-^ NO2CH2-CHI-C=C-Si (Ge) R3 -»

-» NO2CH=CH-CsC-Si (Ge) R3

 M HC10<-> NO2CH=CH-CsCH
(VIII)

Ацетиленовые нитрогликоли получали конденсацией ацетиленовых
'альдегидов с нитроспиртами !5·16:

R _ C ^ C - C + NO2CH2-CH2OH -> R-C=C-CH (ОН) - CHNO2-CH2OH

III. СТРОЕНИЕ И ФИЗИЧЕСКИЕ СВОЙСТВА

Изучение физических свойств α-нитроацетиленов позволило сделать
определенные выводы о сопряжении высокоэлектрофильной нитрогруп-
пы с С = С-связью.

•α-Нитроацетилены — светлые желтовато-зеленые жидкости с силь-
ным лакриматорным запахом, похожим на запах низших нитрооле-
финов.

УФ-спектры нитроацетиленов напоминают УФ-спектры транс-нптро-
олефинов. Коротковолновая полоса УФ-спектров нитроацетиленов бато-
хромно смещается по сравнению с нитроолефинами, а коэффициент экс-



Нитроацетилены 747

ТАБЛИЦА 1

УФ-спектры-а-нитроалкилацетиленов и их этиленовых аналогов3

JVs№ пп

1
2
3
4

5

6

Соединение

f-Bu—feCNO2

ί-Рг—CsCNO2

я-Рг—C=CNO2

./-Bu—CH=CHNO2

(транс)
i-Pr-CH=CHNO 2

(транс)
Me—CH=CHNO2

(транс)

λ,(я—π*)
нм

238
239
235
228

227

225

3,90
3,81
3,88
4,02

3,70

4,01

λ,(η—π *)
ΗΜ

290
290
290

310—320

295-310

1,5
2,2
2,7

• 2,8

2,9

Растворитель

п-Гексан
Циклогексан
и-Гексан
я-Гептан

я-Гептан

«-Гептан

тинкцйи понижается, что характерно для ацетиленовых систем при со-
поставлении их с этиленовыми аналогами 22.

Предполагается, что поглощение при 290 нм (плечо) связано со сла-
бым π — л*-переходом в нитрогруппе фрагментов — С = С ΝΟ2

 2 2 · 2 3 .
В ИК-спектрах α-этиленовых нитросоединений полоса асимметрич-

ных валентных колебаний сопряженной нитрогруппы лежит в области
1517—1530 см~\ а полоса симметричных валентных колебаний ~1340—
1350 см~\ Разность частот асимметричного и симметричного валентных
колебаний, являющаяся важной характеристикой для нитроолефинов,
составляет, таким образом, Δν~180 см~1. Замещение при β-углеродном
атоме нитроалкенов атома водорода атомом брома приводит к увеличе-
нию частот асимметричного и уменьшению частоты симметричного ко-
лебаний и значительному увеличению разности этих частот (Δν = 218·±
±7 см-1)2"·25.

В ИК-спектрах нитроацетиленов полосы симметричного и асимметрич-
ного колебаний нитрогруппы очень интенсивны, причем последние сме-
щены в область более коротких волн (1510—1515 см-1) по сравнению с
нитроолефинами и галогеннитроолефинами3·24·25; значение Δν составля-
ет ~165 см~1. По-видимому, наиболее сильно сопряжение нитрогруппы
с кратной.связью сказывается на интенсивности полосы симметричных
валентных колебаний нитрогруппы: в спектрах нитроацетиленов эта по-
лоса намного интенсивнее полосы асимметричных колебаний, тогда как
в спектрах нитроолефинов интенсивности этих полос приблизительно
равны (в спектрах алифатических нитроалканов полосы симметричных
колебаний нитрогруппы имеют среднюю интенсивность) 26.

В ИК-спектрах α-нитроацетиленов наблюдается расщепление поло-
сы поглощения тройной связи (табл. 2), что характерно для дизамещен-

ТАБЛИЦА 2

Характеристические частоты нитроацетиленов в ИК-спектрах8

Соединение

/-Bu—teCNO2

f-Pr—teCNO 2

я-Рг—C=CNOa

аснмм.

1515

1510

1515

см-1

СИМ1И.

1330

1345

1348

v c = c . ™-1

2235 (c) ·
2270 (ел)
2245 (с)
2210 (ел)
2260 (с)
2200 (ел)

V c _ N . CM~l

730

730

730

12*
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ных ацетиленов. (Например, для трифторпропина и перфтордиметил-
ацетилена3·", см. также табл. 3.) Происхождение дополнительных по-
лос объясняется механическими взаимодействиями; их считают также
обертонами или составными полосами. Однако причина расщепления

ТАБЛИЦА 3

Соединения

*-Bu—feCH
*-Bu—C=C~CONH2

<-Bu—C^C—COOEt
/-Bu—C=C—CN
ί-Bu—C=C-NMe a

/-Bu—C=C— N(Ph)Me
t-Ъи—Z=C~ NO2
/-Bu—C=C—Cl
<-Bu—C=C—Br
ί-Bu—C=C—I
Me3SiCsC—NO2

Me3SiC=C—Cl
Me3SiC=C—Br
Me 3 SiC=C-I

v c=o f*~'

2105
2245 2230
2260 2230
2325 2270
2260 2230
2280 2245
2270 2235
2243 2170

2216
2191
2165
2137
2126
2100

Ссылки на
литературу

28
3
3
3 " •
3
3
3

27
27
27
27
27
27
27

полосы поглощения тройной связи до сих пор является объектом дис-
куссии гг· "•2 8.

Сравнение ИК-спектров галогензамещенных ацетиленов с трет.-бу-
тильным и триметилсилильным радикалом показало, что в последнем
случае наблюдается снижение vc=c на 106—90 см~1.

Для триметилсилилнитроацетилена (vc-c 2165 см~1) по сравнению с
грег.-бутилнитроацетиленом наблюдается закономерное в этом ряду сме-
щение полосы валентных колебаний С = С-связи в низковолновую об-
ласть на ~ 10 см~\ а также снижение ее интенсивности, что может быть

следствием π — d-взаимодействия в группировке — S i — С = С .
/

Полоса 730 см~\ относимая к валентным С—N-колебаниям, постоян-
ная для всех нитроацетиленов3.

Сведения по спектрам ПМР нитроалкенов весьма ограничены29·30.
Спектры ПМР трет.-бутнл-, изопропил- и я-пропилнитроацетиленов,

как и следовало ожидать, оказались очень простыми и содержали толь-
ко сигналы, отвечающие протонам алкильных радикалов.

ТАБЛИЦА 4

Соединение

/-Bu—CH=CH2

f-Bu—CH=CHNO2

ί-Bu—CsCH
ί - B u — 0 Ξ 0 Ν Ο 2

ί-Bu—CsC—COOEt
<-Bu—C=C—CN

β, Μ. д.

1,00
1,15
1,20
1,34
1,32
1,32

Δ6, м. д.

0,15

0,14
0,12
0,12

Ссылки на
литературу

31
3

31
3
3
3

Приведенное в табл. 4 смещение сигналов протонов радикала Ме3С,
находящегося в α-положении к кратной связи, под влиянием различных
электрофильных заместителей (все соединения взяты в виде растворов
в СС14) иллюстрирует влияние нитрогруппы.



Нитроацетилены 749

IV. ХИМИЧЕСКИЕ СВОЙСТВА

α-Нитроацетилены — весьма неустойчивые соединения. Они изменя-
ются при хранении или нагревании значительно быстрее, чем низшие
нитроалкены32·33, 1-нитробутадиен-1,334, а также фторацетилены35.

В условиях ГЖХ (ί = 107—119°) трет.-бутилнитроацетилен, (IV) не
изменялся, изопропилнитроацетилен (V) подвергался разложению на
30—50%, а га-пропилнитроацетилен (VI) —на 80—90%.

С помощью ГЖХ и ИК-спектроскопии было найдено, что «период
полураспада» при комнатной температуре соединения (IV) составляет
2—3 сут., для неочищенных образцов (V) 10 часов, а (VI) — 1—2 часа.

Наиболее подробно была исследована термическая устойчивость IV.
Показано, что в 20%-ном растворе в толуоле IV разлагается при 80—
85° на 50% за 30 мин. и почти полностью — з а 10 час. Перегоняется IV
при 55°/15 мм с частичным разложением; плавится при температуре
около — 3 О 3 .

В разбавленных растворах неполярных растворителей (IV) устойчив
при ПО—120°. Направление превращения нитроацетиленов при хране-
нии и нагревании не установлено.

Индуктивный эффект нитрогруппы очень высок и сопоставим с ин-
дуктивным эффектом фтора36. Поэтому можно было предполагать, что
олигомеризация трег.-бутилнитроацетилена и грег.-бутилфторацетилена
будет проходить аналогично. Трифторметилацетилен превращается при
хранении в замещенные изомеры бензола и некоторые тетрамерные про-
дукты37·38. Однако после месячного стояния при комнатной температуре
продукты олигомеризации (IV), по данным ГЖХ, содержали наряду с
исходным (IV) более 20 соединений, из которых удалось выделить лишь
один аддукт (выход—1%), отвечающий формуле C12H18N4O8 (две мо-
лекулы трег.-бутилнитроацетилена в сочетании с молекулой N2O4).

1. Гидрирование

Для доказательства строения (IV) было проведено его каталитиче-
ское гидрирование над окисью платины, при этом была получена смесь
ожидаемого амина (IX) и, как показал спектр ПМР, димерного соедине-
ния — соответствующего симм. дизамещенного гидразина3. Восстанов-
ление IV литийалюминийгидридом в эфире привело.к амину (IX), кото-
рый выделяли в виде 3,5-динитробензоильного производного (X) 39:

>- <-Bu—CH,—CH,—NH-CO—(Q,

(Χ)

2. Бромирование

Реакция грег.-бутилнитроацетилена с бромом в хлороформе протека-
ет с небольшим разогреванием и приводит к 1,2-дибром-1-нитроэтилену
с почти количественным выходом:
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/-Bu-C=C-NO 2 + Br2 S ^ T * C=,CBrNO2

/Bu/
(XI)

ПМР-спектр последнего содержит синглет с 6=1,5 м. д., отвечающий
протонам грег.-бутильной группы, смещенный в более слабое поле по
сравнению с исходным нитроацетиленом 3.

Механизм этой, казалось бы, элементарной реакции требует специ-
ального обсуждения. Реакция брома с олефинами и ацетиленами рас-
сматривается как электрофильное присоединение40.

Однако факт ускорения бромирования замещенных толанов (незави-
симо от природы заместителей)41 позволил предположить, что первая
стадия в этих некатализируемых реакциях — присоединение нуклеофи-
ла4 2. В случае нитрооле.финов и нитроацетиленов картина еще более
усложняется вследствие возможности кислотного катализа43 следами
НВг и НС1, присутствующими в хлороформе и обеспечивающими нук-
леофильную атаку брома.

Недостаток экспериментальных данных не позволяет предсказать
стереохимическую последовательность как катализируемого, так и не-
катализируемого присоединения к нитросоединениям, содержащим
кратные связи.

3. Гидрохлорирование

Известно, что взаимодействие нитроолефинов с безводным хлори-
стым водородом представляет собой сложную последовательность реак-
ций44, приводящих с нитроолефинами, не имеющими α-водородного
атома, к 1,2-дихлор-1-нитрозоалканам45:

/NO,\ /
С=С НС1

\

I /
-C-C=N

НС1 [ ° 1
lit

—С—C-N—ОН
I I I
CI CI Η J

I I
CIC1

NO

Гидрохлорирование нитроацетиленов (IV) и (V) даже при избытке
НС1 протекает по-иному — с' количественным образованием исключи-
тельно ^"с-2-хлор-нитроолефинов 3:

CL /NO 2

R-C=C-NO 2 + НС1 2*22. _> С=С

(XII), R=i-Br,
(XIII), R=i-Pr.

Таким образом, ожидаемое по аналогии с нитроолефинами 1,4-при-
соединение в случае нитроацетиленов не имело места. Вероятно, меха-
низм присоединения хлористого водорода к нитроацетиленам иной, чем
в случае нитроолефинов. Гранс-присоединение хлористого водорода к Ь
тройной связи обычно рассматривают как реакцию электрофильного
присоединения 3-го кинетического порядка (реакция типа AdE 3). При
этом переходное состояние можно представить следующей схемой3:
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Η·

Η Cl
β(+) б(-)

Известно, что присоединение НС1 к активированным ацетиленовым
системам, например, ацетилендикарбоксилатам, начинается нуклеофиль-
ной атакой46"48 и завершается быстрым протонированием. Так как нит-
роацетилены должны быть еще более электрофильными системами, то,
по-видимому, в этом случае присоединение происходит по тому же ме-
ханизму.

4. Гидратация

Вода вызывает полимеризацию низших нитроолефинов * 4 · 4 9 · 5 0 . Под-
бор условий, устраняющих полимеризацию, позволил провести присое-
динение воды по двойной связи с последующим расщеплением продукта
присоединения на карбонильное соединение и нитроалкан. Эта реакция
в щелочных условиях обратима. В результате реакции получается аль-
доль. Тип реакции — ретроальдольный " · 5 2 .

При обработке нитроэтилена холодным разбавленным раствором
серной кислоты был выделен промежуточный нитроспирт53.

Грег.-бутилнитроацетилен гидратируется намного легче нитроолефи-
нов и в мягких условиях (ТГФ, 20°, 24 часа) гладко превращается в 3,3-
диметил-1-нитробутанон-2 (XIV) 3:

<-Bu-C=CNO2 + Н2О ̂ - » '-Bu-C-CH2NO2

О
(XIV)

5. Нуклеофильное присоединение

По аналогии с нитроалкенами следовало ожидать, что нитроаце-
тилены окажутся склонными к реакциям нуклеофильного присоедине-
ния. Замещенные ацетилены, сопряженные с нуклеофильными и элект-
рофильными группировками, различаются порядком присоединения к
ним нуклеофилов.
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Аналогия в электрофильных свойствах нитрогруппы и фтора может
быть распространена на химическое поведение нитро- и фторацетиле-
нов5 4. Близость электроотрицательностей нитрогруппы и фтора следует
из сопоста-вления хим. сдвигов в спектрах ПМР систем Me—X, связан-
ных с электроотрицательностью заместителя X > (табл. 5), а также из.

ТАБЛИЦАS

Химические сдвиги протонов в Me—X (растворитель СС14)
3

X

δ лг. д.

ΝΟ 8

4,72

* в CF.COOH
· · газ

F

4,67

С1

3,46

Me3N

3,33*

CN

2,32 0,

Η

13**

работы37, в которой рассчитаны значения электроотрицательностей орга-
нических функциональных групп, исходя из химических сдвигов и кон-
стант спаривания в 5-эндозамещенных норборненах.

Присоединение спиртов и аминов. α-Нитроацетилены обладают вы-
сокой электрофильной реакционной способностью. Реакции с нуклео-
фильными реагентами самого устойчивого из изученных а-нитроацети-
ленов — грег.-бутилнитроацетилена (IV) — протекают без катализато-
ров при —30ч- + 20°. Электрофильность тройной связи в этом соедине-
нии значительно повышена по сравнению с тройной связью в аналогич-
но построенных гетерозамещенных ацетиленах " и двойной связью в их
этиленовых аналогах 5б~58.

Показано, что IV в метаноле и этаноле в мягких условиях (комнат-
ная температура, 24 часа; отсутствие катализатора) гладко превраща-
ется в соответствующие г^ыс-нитровиниловые эфиры (выход 95%).

' Повышенная интенсивность в ИК-спектрах полос двойной связи
(1615, 1618 см~1) подтверждает беспрепятственное сопряжение двойной
связи с нитрогруппой, что возможно только в г^ис-форме нитровинило-
вого эфира3.

RO. X / N O 2

t-Bu— CsCNO2 + R—ОН -> C=C

ί-Βι/ ^ H
(XV; - R=Me)

(XVI, - R= Et)

Известно, что аммиак, первичные и -вторичные алифатические амины
легко присоединяются к нитроолефинам49, а также вызывают их поли-
меризацию50.

Реакция IV с алифатическими аминами протекает экзотермично и
завершается воспламенением. Однако в эфирном растворе в случае ди-
этиламина в контролируемых условиях с хорошим выходом образуются
ожидаемые аддукты3:

> E t 2 N x c = d / N ° 2

(XVII)

Продукт присоединения пиперидина к IV в чистом виде не выделял-
ся, а идентифицировался в виде бензоильного производного продукта
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его гидрирования (XVIII):

κ\

\ N .
-Bu— C = C — NO 2 +HN c

/
t-Bu

\ H

CH-CH2—NH—COPh

t-Bu

(XVIII)

В случае анилина реакция протекает с образованием нормального
продукта грамс-присоединения (ХХа), находящегося в равновесии с
таутомером (ХХб) 3:

H2NPh

PhNH
. \ /

c=c

NO,

i-Bu
(XIX)

Ph — N . Ph—N.

C=C

Η

(ХХа)

\
C—CH,—NO,

(ХХб)

Недавно Фие с сотр.59 показали, что при взаимодействии IV с арил-
гидразинами образуются 1,3-дизамещенные 1,2,4-триазолиноны-5 (XXI):

и— C = C — N0 2 + H2N—NH—Ar -» t-Bu— C— teN -» 0 ->/-Bu—С NH
i! I
N C = 0N

ΗΝ
I

Ar

(XXI)

Высокая и противоположная поляризация грег.-бутилнитро- и амино-
ацетиленов позволяла предположить возможность прямого сочетания
этих соединений в циклобутадиеновую систему по схеме:

/-Вп—C=C=NO., (IV)f-Bu— C=C—NOo

/-Bit—C^C-^N\ -*->• /-ВЧ—C=C=.\ (XXII)

( iv) ·;- (xxi i )

u \ /NO 2

X

i-BiK

/-Βιι'

θ
NO,

\
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Попытки синтеза подобных систем на основе α-нитроенаминов, пред-
принятые Бреслоу с сотр.60, оказались неудачными.

В то же время, по данным ИК-спектроскопии реакция IV с XXI 1а
протекает количественно с образованием соединения (XXVa) (схема 1),
которое, однако, удалось выделить лишь с 29%-ным выходом. Анало-
гично (с выходом 21%) было выделено соединение (XXVB); В ЭТОМ слу-
чае, кроме того, протекает конкурирующая реакция 1,3-диполярного
присоединения IV к XXVB, приводящая к образованцю изоксазольного
производного (XXVI) 3.

6. Реакции диенового синтеза

Известно, что скорость реакций диенового синтеза увеличивается при
введении электронодонорных заместителей в диены и электроноакцеп-
торных в диенофилы («правило Альдера») " · 6 2 . На основании этого мож-
но было предположить, что если грег.-бутильная группа в IV не создает
пространственных затруднений, то реакция 1,4-циклоприсоединения IV
•будет облегчена в случае электрообогащенных алициклических диенов.

Схема 1

/-Bu—C=C—NO, -I- <-Bu—C==C—N

7>

^o

•Me

f-Βι/

(ххш)

I

4 N — M e

R J
(XXIV)

/-Bi
θ Φ^°

/-Bu i-Bu

(XXV)

(XX!I)-(XXV): a) R = Me; в) R = PJi



Нитроацетилены 755

Однако из большого набора диенов (2,3-диметилбутадиен-1Д цикло-
пентадиен (ЦПД), циклогексадиен-1,3, циклогептадиен-1,3, циклоокто-
тетраен, тетрациклон, фуран, 2,5-диметилфуран, дифенилизобензофу-
ран) только ЦПД (XXVII)—один из самых реакционноспособных ди-
енов6 1·6 2— легко вступает в реакцию с IV, а также V и VI с образовани-
ем соответствующих аддуктов (XXVIII). При этом скорость образова-
ния аддуктов превосходила скорость димеризации ЦПД.

DR-C^C-NO, + I! | | - ^ | | )|| -bi^i.
PhCOC

(XXVII) (XXVIII) (XXIX)

а) R = f-Bu,

б) R= л - Р г ,

в) R = i - P r

Разделение аддуктов (XXVIII) и димера ЦПД осуществляли коло-
ночной хроматографией на силикагеле. Соединение (XXVIHa) получали
•с высоким выходом в виде желтой жидкости, окислявшейся при стоянии
на воздухе. Аналогичные соединения (XXVIII, б, в) были еще более чув-
ствительны к воздуху. Несмотря на трудности в очистке, продукт
(XXVIII6) удалось идентифицировать с помощью ГЖХ и спектроско-

пии ПМР 3.
Известно, что по сравнению с другими диенофилами нитроолефины

обладают наиболее высокой реакционной способностью по отношению к
ЦПД 6 3 · 6 4 . Однако для получения информации об относительной реакци-
онной способности — С = С—ЫО2-системы, следовало сравнить, напри-
мер, IV с другими ацетиленовыми системами, высокая диенофильность
которых уже известна. При этом стерические условия должны быть рав-
ными, поэтому были специально синтезированы XXX и XXXI. Показа-
но3, что отношение констант скоростей реакций ЦПД с IV и другими
членами ряда

.*-Bu—C=C—NO2 t-Bu—CisC—COOEt t-Bu— C s C — CN t-Bu—CH=CHNO2

(IV) (XXX) (XXXI) (XXXII)

превышает 104. По-видимому, более показательным было бы сравнение
реакционной способности IV и хлорангидрида Т/Оег.-бутилацетиленкар-
боновой кислоты3, так как установленные значения констант скорости
реакции диенового синтеза с Ц П Д (k) для соединений транс-ХСН =
= С Н Х 6 5 и i-BuC = CY свидетельствуют о близости влияния СОС1 и NO2-

групп как заместителей.
транс-Х—СН = СНХ i-BuC = CY
Заместитель X СОС1 COPh CN COOMe3 NO 2 CN

k 6700 18 1,1 1,0 > 1 0 4 1,0
В качестве диенофилов использовались также 4-триалкилсилил- и 4-.

триалкилгермил-1-нитробутен-1-ины-3и (XXXIII). Однако конденсация
указанных соединений с алкадиенами-1,3 (ди-винилом, Ц П Д ) протекает
только по олефиновой группировке, причем образующиеся аддукты лег-
ко расщепляются в кислой среде по связи Si—С или Ge—С:

с4н, SM HCIO,

(XXXIII)
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Своеобразно протекает реакция IV с циклопентен-1-ил-Ы-пирролиди-
ном ".

По аналогии с реакцией енаминов с нитроолефинами67-76 и с олефи-
нами, содержащими другие электрофильные заместители67·68· 77~80, а так-
же с ацетиленовыми системами66· 80~83, в данном случае можно было бы
ожидать образования четырех продуктов: производного циклогептадие-
на (XXXIV), его таутомера (XXXV), продукта алкилирования по Стор-
ку (XXXVI), производного циклобутена (XXXVII):

/-Bu--C=C—

+

/-И11

-K
/\

V

NO

NO

)

2

2 эфир

(χχχνϊ

Bu NO, /-BU Η

/У % — Ν ΤΓΦ,Η+ (/

(XXXIV)

NO.,

(XXXVI)

(XXXVIII)

(XXXV10

Однако спектр ПМР. полученного аддукта показал присутствие толь-
ко циклогептадиеновой структуры (XXXIV). Строение аддукта (XXXIV)
подтверждено также мягким кислотным гидролизом, приводящим к а-
нитрокетону (XXXVIII).

Присоединение енаминов к нитроацетиленам протекает сложно, мно-
гостадийно, что подтверждается отличием ИК-спектра, снятого немед-
ленно после завершения реакции, от ИК-спектра продукта, полученного-
после перекристаллизации. В начале, по-видимому, образуется неустой-
чивый продукт (XXXVII) (ориентация присоединения определяется сте-
рическими препятствиями г^ис-грег.-бутильной группы), который и пере-
группировывается в выделенный XXXIV. Реакция нитроацетиленов с
циклическими енаминами является удобным синтетическим методом
расширения цикла на два углеродных атома66.

Приведенные в настоящем обзоре данные свидетельствуют об отсут-
ствии полной аналогии в поведении этиленовых и ацетиленовых нйтро-
соединений. Изучение нитроацетиленов только начато, и можно ожи-
дать, что в ближайшее время будут получены новые интересные дока-
зательства взаимного влияния атомов в соединениях этого класса, свя-
зи между их электронной структурой и реакционной способностью, а
также выявлены их разнообразные синтетические возможности.
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